PREFACE



The first edition of the Radiofrequency Radiation Dosimetry Handbook, SAM-TR-76-35 (September 1976), was published with the objective of providing the best information then available about electromagnetic energy absorption. In that edition the dosimetric data were limited mostly to the lower part of the electromagnetic spectrum, principally in the 10 kHz-1.5 GHz range, and also to homogeneous spheroidal and ellipsoidal models of humans and other animals. The data clearly demonstrated the importance of frequency, geometric configuration, and orientation in the assessment of biological effects induced by radiofrequency (RF) radiation.
The second edition of the handbook, SAM-TR-78-22 (May 1978), provided expanded dosimetric data. The frequency range was broadened to the 10 MHz-100 GHz band. The data included absorption of models irradiated by planewaves in free space, absorption of models on or near ground planes, heat-response calculations, and some scattering data. Empirical relations for calculating the rate of energy absorption; some rules of thumb for electromagnetic absorption; and data from the literature for metabolic rates, dielectric constants, and conductivities were also included as well as tables summarizing the experimental data and theoretical techniques found in the literature.
The third edition of the handbook, SAM-TR-80-32 (August 1980), was published mainly to provide new data on near-field absorption, which up until that time was scarce because near-field calculations are so difficult to make. The data consisted of specific absorption rates (SARs) for spheroids and cylinders irradiated by short dipoles and small loops, and a block model of man irradiated by simple aperture fields. Also included were absorption data for spheroidal models irradiated by circularly polarized planewaves, multilayered cylindrical models irradiated by planewaves, and spheroidal models irradiated in K polarization by planewaves for frequency ranges in which calculations had not been possible for the second edition. Tables in the second edition that summarized experimental data and theoretical techniques found in the literature were updated; although generally speaking, material contained in the first and second editions was not included in the third edition.
The third edition also had a section on dosimetric techniques, which included a history of electromagnetic dosimetry and a section on qualitative near-field dosimetry. The material on qualitative explanations of near-field SARs is especially important because near-field SARs cannot be normalized to incident-power density, as planewave SARs can be. Since near-field radiation fields vary so much from one radiation source to another, near-field dosimetric data for specific sources could not be given; only near-field SAR data for simple illustrative -radiation fields were presented.
The purpose of this fourth edition is to provide a convenient compilation of information contained in the previous editions, including updated tables of published data, and to add new information.



Go to the Acknowledgments Page.

Go to the Table of Contents.

Last modified: June 14, 1997
October 1986, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, TX 78235-5301